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Abstract

A version of the chirp z-transform (CZT) enabling signal intensity and phase-preserving field-of-view scaling has been programmed.
The algorithm is important for all single-point imaging sequences such as SPRITE when used with multiple data acquisition for 7 map-
ping or signal averaging. CZT has particular utility for SPRITE imaging of nuclei with short relaxation times such as sodium at high
field. Here, a complete theory of the properties of CZT is given. This method operates entirely in k-space. It is compared with a conven-
tional interpolation approach that works in image space after the application of a fast Fourier transformation.

© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Single point imaging (SPI) sequences as originally pro-
posed by Emid and Creyghton [1] are pure phase encoding
sequences. Following stabilisation of the phase encoding
gradients, a broadband RF excitation pulse is applied
and a single datum point is acquired after an encoding
time, f,. Compared to conventional sequences such as
FLASH or EPI, one of the advantages of SPI methods is
that the acquired data are not convolved with the 77 decay
since each point in k-space is acquired after the same
encoding time following excitation. In addition, SPI meth-
ods are particularly suited for the acquisition of data from
fast-relaxing nuclei. Using SPRITE (single point imaging
with 77 enhancement) as a variant of SPI, introduced by
Balcom et al. [2], sequence efficiency is increased and large
gradient switching is reduced because SPRITE allows the
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use of small, stepped changes of the magnetic field gradi-
ents. Recently, the SPRITE sequence has been further im-
proved by Halse et al. [3] to allow for centric k-space
encoding through the utilisation of spiral and conical
trajectories.

By sampling multiple data points following a single exci-
tation pulse, SPI sequences are capable of acquiring data
for the calculation of T maps [4]. However, in the multi-
ple-point SPRITE sequence (m-SPRITE), where data
acquisition is performed during constant phase encode gra-
dients, the k-space encoding is different for each acquired
datum point and therefore the field-of-view (FOV) changes
between successive points. With a changing FOV, the sig-
nal per voxel scales proportionally with the voxel volume.
Hence, FOV scaling and normalisation of image intensity
is needed to ensure that the signal intensity per voxel vol-
ume is preserved. This can be performed by an interpola-
tion step following a conventional Fourier transform, or
by using the chirp z-algorithm developed by Rabiner
et al. [5]. Tong et al. [6] used the chirp z-transform (CZT)
for rotating and shifting NMR images. The CZT can also
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be implemented to effect a FOV scaling. This was proposed
by Heid [7] for the purposes of using the multiple points for
signal averaging. In the work of Halse et al. [8] the CZT
was first used for T3 mapping of m-SPRITE data. The
work presented here is an in depth evaluation of the CZT
algorithm where, we have in addition modified the CZT
algorithm such that phase information is preserved and a
coherent summation of the transformed images can be used
for signal averaging. It has been shown by Rioux [9] that
alternative regridding and interpolation methods, as devel-
oped by Dutt and Rokhlin [10], are less accurate and more
time consuming.

This study investigates the mathematical properties of
the two alternative algorithms. A representation formula
of the numerical chirp z-transform is derived. It is shown
that this representation corresponds to a convolution with
a periodic sinc kernel.

2. The SPRITE and m-SPRITE sequence

The SPRITE sequence, introduced by Balcom et al. [2],
was proposed by Beyea et al. [4] as a promising imaging se-
quence for 75 mapping of fast relaxing nuclei such as sodi-
um. SPRITE, being a variant of the single point imaging
method, acquires a single phase-encoded datum point after
spin excitation and a fixed time delay, #,. Three-dimension-
al phase encoding is achieved with magnetic field gradients
that remain constant between RF excitation pulse and sig-
nal acquisition in each of the three dimensions (Fig. 1). By
stepping the ramped gradient, rapid and large switching of
the gradients can be avoided. This not only reduces perfor-
mance demands on the gradient system but also is benefi-
cial for patients who would be exposed to smaller
magnetic field changes, dB/ds, and less acoustic noise.
The time between excitation and signal acquisition can be
kept small, which is desirable in the case of fast relaxing

'p
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nuclei, and is only restricted by the maximum gradient
strength and the ring down time of the RF coil.

Since the time ¢, is fixed, the reconstructed images are
not convolved with 73 decay. By acquiring several data
points per excitation with m-SPRITE (Fig. 1), a series of
images can be reconstructed and by fitting the signal inten-
sity of a given voxel, the T’ value can be obtained. Further-
more, the spin density can be obtained by extrapolation to
time # = 0. The main problem here is that the FOV changes
as encoding time increases, resulting from the changing
sampling of the signal in k-space where Ak is proportional
to f,. Additionally, the intensity per voxel in the recon-
structed image is proportional to the volume so that nor-
malisation is needed to extract the true 7’ decay.

3. Theory
3.1. Signal in multiple-point SPRITE

Let p(x) be the spin density at the spatial coordinate
x € W, The transverse relaxation time at x is denoted by
T5(x). The data sets measured at time points ¢ > ¢, >0
by a standard multiple-point SPRITE sequence can be ex-
pressed as

S(08) = [ plr)e e, g e (1)

where we have used the common abbreviation
t
Y
k(t) =tg = — Gd
0 =1e= [ oar

G € R’ is the applied gradient strength for a single point,
and v is the gyromagnetic ratio of the nucleus under inves-
tigation, e.g., y =42.6 MHz/T for protons. Note that in
multiple-point SPRITE measurements both ¢ and g are
variable. We confine ourselves to a one-dimensional
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Fig. 1. Schematic representation of the m-SPRITE pulse sequence. Note that the data points denoted by different symbols are rebinned to form unique k-
spaces. This means that a given plane in k-space is filled by squares only, pentagons only, and so on.
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description for simplicity. Accordingly, we assume that the
spin density p(x) has finite support in ‘R,

supp p(x) C [—a,a], 0 < 2a=FOV, (2)

and the measured signal g(t,g) for tn<t<Tgr and
Zmin < £ < Zmax 18 band-limited. Hence, by Shannon’s Sam-
pling Theorem [11], we can approximate the SPRITE data
S(1,g) to good accuracy by the trapezoidal rule

S(l, g) ~ Sapprox(tg)

q—1
= Ax Z pr(m)eft/ T () g~ 2mimAxtg. 3)

m=—q

where, Ax = a/q = 2a/N denotes the sampling step-size of
p(x) and T5(x), i.e., the two unknown functions p(x) and
T5(x) are discretised with N = 2¢ points. In the following,
we use the substitutions p,, = pa(m)= p(mAx) and
(T3),, = T3 (m) = T5(mAx). This allows us to formulate
the mathematical problem of SPRITE imaging as follows:
from a given measurement signal S(z.g), 7o < ¢ < T and
Zmin < & < Zmax, find 2N values p,, and (75), such that
Eq. (3) holds.

Remark: Eq. (3) only formally resembles the discrete
Fourier transformation (DFT) since the variables ¢ and g
are independent from each other in a SPRITE measure-
ment. To obtain a valid (discrete) Fourier transformation
pair, it is necessary to have only one conjugate variable.
Obviously, this condition is violated in a SPRITE measure-
ment with multiple point acquisition. Therefore, the theory
of DFT does not apply in this case.

From Eq. (1) together with the limits —gpax < € < Zmax
we may write

S(t,8) = 1116, (1) F (8. 1), (4)

where, we have set
F(x,1) := p(x)e /1%,

and y is the indicator function of the interval [—|gmax|t,
|gmax|?]. The Fourier transform of F is taken w.r.t. the
spatial variable x only. Eq. (4) enables us to make use of
the formulae in Appendix A after having discretised the
measurement signal S(7,g) with respect to both time 7 and
gradient g. This is described in the next section.

3.2. CZT for SPRITE data

For a real experiment, the semi-discrete formulation of
Eq. (3) has to be modified further because it is the signal
S(1,g) that is naturally sampled in the measurement pro-
cess. First of all, let us assume that we can adjust the gra-
dient strength G so that the product zg in Eq. (3) is
normalised with respect to ¢. Therefore, we have to differ-
entiate between the absolute time #y < ¢ < fpax = 1,1 of
the actual acquisition time, and the relative time Z = ¢/
tmax < 1 of the gradient factor in what follows. In fact,
we will see that Z serves as a scaling factor in the recon-
struction process described below.

Next, we chose the Nyquist rate Ak = 1/2a = 1/FOV as
the gradient step-size Ag (according to the support of p and
T3) such that
Ak =4 L1

q2a 2q

and we assume that we are given a finite number of time
points
t1:l‘0+lAl, 1207...,[?—1,
At being the dwell time. Now, we apply the chirp z-trans-
form (A.2) to the sampled signal
S, = S(t1,nAk/t, ),

[=0,...,p—1.

n=-—q,...,q—1,

Using (A.4) from Appendix A we obtain
~ qil ~
Fm,l :ZlAk . Z S”JemZ/mn/q’ Z[ = tl/tp—la

n=—q

=2qZIAk F(X,t])

_m_
2gAk)’

(5)

® Y e MAMEIIMISinG) 1 ak(x — j/ Z1AK)
J

where the convolution “®” is taken with respect to the spa-
tial variable x only. The variable scaling factor, Z;, has the
effect that the result of the convolution is sampled with a
constant step-size, Ax = 1/2qAk. Even more importantly,
the result is renormalised such that the values correspond-
ing to the different time points, ¢, are weighted correctly.
Thus, the values F s Which are the result of CZT applied
to the measurement set, Sn,l , are equidistantly sampled in
space, independent of Z; , and accordingly scaled to the
effective step-size. Obviously, this is indispensable for the
task of averaging or 77 fitting, for example. Furthermore,
if we put

Foy = F(mAx, 1) = p,e"/Tn,

1
Ax =5 Ak

m:_q7"',q_17

[=0,...,p—1,
as abbreviation, we see from Eq. (5) that the output of CZT
is a convolution of the true object function F,,,; and a peri-
odic sinc kernel. This is the characterisation of the error
introduced by the numerical CZT.

4. Methods

Imaging experiments were performed on a VARIAN 4
Tesla UNITY INOVA whole body scanner. Two m-
SPRITE imaging experiments were used to investigate the
properties of the reconstruction algorithms with respect
to noise and resolution, respectively. A spherical phantom
filled with 400 mM saline solution was used for sodium
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imaging and a standard resolution phantom filled with
transformer oil, for optimal signal uniformity, was used
for proton imaging. The sodium phantom was scanned
with 81 time points between 10 and 50 ms after spin excita-
tion with a resulting FOV scaling of 5:1 and a dwell time of
500 ps. The FOV for the last image was 400 mm in each
coordinate and the experiment was repeated four times to
form an averaged data set. The resolution phantom was
imaged with encoding times between 0.2 and 1.0 ms mea-
suring 17 time points at a dwell time of 50 pus. Thus, the
FOV scaling was up to a factor 5:1. The size of the FOV
was 256 mm isotropic and no averaging was needed in
the case of proton imaging. Both data sets had a matrix size
of 64 x 64 x 32.

An artificial phantom data set was used for simulations
modelled by four concentric Bessel functions in k-space
representing a resolution phantom of concentric spheres
in image space. The data set consisted of a series of 81
images with a maximal FOV scaling of 5:1 representing
an MRI scan with acquisition times between 10 and
50 ms and a dwell time of 500 ps. With reference to this,
the k-space data were multiplied with a decay process with
a relaxation time of 7; = 15 ms. To enable a good compar-
ison with the MRI scans, the matrix size was again
64 x 64 x 32.

To validate the consistency of the two methods, the CZT
and the linear interpolation approach, a simple but impor-
tant test was used. By taking the magnitude of the sum of
all complex image points per time step, ¢, , the centre of k-
space can be recalculated according to Fourier transform
theory

|S(te, k)| =

b

ZF(fz,xm)e_Mk”x'”
m

> F(te,xn)

Comparing these values with the measured k-space centre
points (zero gradients) the accuracy of the data processing
was checked.

For a comparison of the influence on SNR between both
reconstruction methods, a summation of the magnitude
image points was performed. Because of the triangle
inequality

> F(te,xn)

it is expected that taking the sum of magnitudes leads to
coherent noise summation.

An artificial data set with constant value 1.0 in all
positions was used to simulate the PSF for both methods
with a matrix size of 32 x 32 x 16 with scaling factors up
to 5:1. To measure the PSF of an m-SPRITE scan a phan-
tom of 35+ 5pl transformer oil was used and carefully
positioned within a single voxel volume off-centre in the
FOV. Note that now the FOV was chosen such that the

(6)
|S(1,0)| =

< S IF (). ™)

size of this tiny phantom was below the effective voxel size;
i.e., the matrix size was again 32 x 32 x 16 with a FOV of
128 x 128 x 64 mm resulting in a nominal voxel size of
4x4x4mm for the smallest FOV. The encoding time
for nine multiple points was between 0.2 and 1.0 ms with
a maximum FOV scaling of 5:1. A total of 24 averages were
acquired with the PSF oil phantom plus 24 averages with
the supporting foam only. In taking the difference between
both averaged data sets the signal of the oil phantom was
separated from the background.

All data processing was performed on a Macintosh G5
under MAC OS X. Both simulated data and measurement
data were reconstructed with the same algorithm pro-
grammed with IDL 6.0. The chirp z-transform was pro-
grammed as described here. For linear interpolation, a
standard IDL function was used. This was performed in im-
age space and independently in real and imaginary parts
after transforming the data using a FFT. The algorithm
was chosen as the most simple and standard technique for
an initial comparison.

5. Results and discussion

The two reconstruction methods, the CZT and interpo-
lation after FFT, were evaluated with respect to resolution
maintenance and SNR, respectively.

In Fig. 2 profiles through the simulated and measured
PSF are shown for four different time points and scaling
factors of 2.5, 1.66, 1.25, and 1 corresponding to encoding
times of 0.4, 0.6, 0.8, and 1.0 ms. As predicted by theory,
the PSFs for the interpolation method are, to good approx-
imation, y;, ® y,,, whereas the PSFs of CZT are sinc
functions. Both the simulations and the measurement re-
sults exhibit these properties. The deviation from the ana-
Iytical sinc function, as given in Eq. (5), is explained by
under-sampling effects. All PSFs are multiplied by cubic
scaling factors. Note that the amplitude of the measured
PSFs is reduced by the 75 decay of the transformer oil
whereas this is not the case for the simulated PSFs.

Reconstructed images of a simulated resolution phantom
data set are depicted in Fig. 3. Fig. 4 shows images of the pro-
ton resolution phantom and Fig. 5 the sodium imaging re-
sults. For all three data sets, four images from each series
of 81 images are shown obtained through reconstruction
by the CZT and interpolation after FFT, respectively. These
four images are arranged with increasing acquisition time
from the upper left to the lower right, i.e., the scaling factors
decrease in this order. The images are presented with scaling
factors of 2.5,1.66, 1.25, and 1. For higher scaling factors the
spatial resolution is almost completely degraded.

The advantage of the CZT is demonstrated by the imag-
es of the resolution phantoms (Figs. 3 and 4) where finer
structures are clearly better resolved by the CZT. For com-
parison, profiles through the images are shown. Comparing
the interpolation method with CZT, the latter produces
stronger ringing artefacts. These artefacts increase with
higher scaling factors. This can be explained by the convo-
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Fig. 2. Four profiles through simulated (A) and measured (B) point
spread functions (PSF) are shown for scaling factors of 2.5, 1.66, 1.25, and
1, from left to right. To make the different PSFs distinguishable in one
graph artificial offsets of 0.3 and 0.6 (A) and 3.0 (B) have been added to
the curves. The simulated PSFs for CZT (solid line) show sinc functions
depending on the scaling level both in the simulated PSFs (A) and the
measured PSFs (B). The measured PSFs are acquired using a transformer
oil phantom with a volume below the voxel size.

lution with sinc functions of decreasing frequency as a
property and a drawback of the CZT.

In the case of noisy data sets (e.g., the sodium measure-
ment Fig. 5), the interpolation approach yields images of
better SNR compared to the CZT images. It is well known
that the interpolation process is almost equivalent to low
pass filtering [15].

At higher scaling factors, the noise has a reduced influ-
ence since the SNR is a function of the cubic scaling factor.
That is, the signal is proportional to the voxel volume with
respect to the FFT whereas the noise level is constant for
each acquired time point.

A summation of the image point magnitudes accord-
ing to Eq. (7) results in a coherent summation of the im-
age noise. This provides a simple overall SNR estimate
for both methods. Since the constant noise level for all
acquired time points is divided by the cubic scaling fac-
tor for signal intensity correction, the scaling factor has a
significant influence on the sum over magnitudes.
Depending on the noise level, the calculated values in-
crease at a certain point in the image series as shown
for the sodium images in Fig. 5. With the exception of
the last image, where the transformation is identical to

achirp z-transformed

1.0 b A d .
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=
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=
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Fig. 3. Simulation results from an artificial resolution phantom modelled
by four concentric Bessel functions in k-space including (A) CZT and (B)
interpolation reconstructions with (C) a comparison of central profiles.
Encoding times and scaling factors of 2.5, 1.66, 1.25, and 1 are identical to
the proton images in Fig. 4. Central vertical profiles (C) are plotted
consecutively from upper left to lower right and each profile consists of 64
pixels. The CZT images exhibit some artefacts in this case.
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Fig. 4. Results from m-SPRITE proton imaging of a resolution phantom
filled with transformer oil including (A) CZT and (B) interpolation
reconstructions with (C) a comparison of vertical profiles. The CZT
reconstructed images (A) show much better resolution compared to the
interpolated images after FFT (B). The vertical profiles (C) are plotted
consecutively from upper left to lower right and each profile consists of 64
pixels. The encoding times were 0.4, 0.6, 0.8, and 1.0 ms from the upper
left to the lower right with corresponding scaling factors of 2.5, 1.66, 1.25,
and 1.
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Fig. 5. Results from m-SPRITE sodium imaging including (A) CZT and
(B) interpolation reconstructions. The CZT reconstructed m-SPRITE
sodium images (A) appear noisier and less homogeneous compared to the
interpolated images after FFT (B). The acquisition times are from the
upper left to the lower right 20, 30, 40, and 50 ms with corresponding
scaling factors of 2.5, 1.66, 1.25, and 1. (C) The sum over all magnitude
points of each image is compared between the CZT reconstructions and
the interpolation reconstructions.

the FFT for both data processing models, the chirp z-
transformed images always result in a higher value, first,
because of the convolution with the sinc function in the
chirp z-transform at higher scaling factors and second,
because of the smoothing effect of the interpolation
method.

The summation over magnitudes and the difference to
the k-space centre gives a qualitative measure of the noise
level in the images. This calculation serves as an indicator
for the feasibility of 7; mapping with an acquired data
set since 7, mapping on a voxel-by-voxel basis needs a suf-
ficient SNR. SNR is reduced not only by relaxation at the
end of the decay but also is a function of the scaling factor.
A low SNR shifts the voxel signal intensity at the end of the
decay curve. This would result in bad fitting results and,
consequently, wrong T values.

An example of the validation procedure as described
by Eq. (6) is shown in Fig. 6 for the sodium measurement.
The mean relative difference (average ¢;-norm) from the
k-space centre was 4.41% for CZT images and 4.34%
for the interpolated images. The good correspondence en-
sures that the chosen data processing is applicable for 7T

mapping.

1 5 [ T T T T
—_ x ABS(SUM(image poinls(chirp_z))):
c:; d O ABS(k-space centre)
g 101 Relative Difference: 4.41%
.(7‘> 0
c
9 L
£ L
5 5r
2 I
w
0 I 1 1 1 1 9
0.00 0.01 0.02 0.03 0.04 0.05

Encoding Time [s]

Fig. 6. Comparison of the sum over all complex points for each image
reconstructed with CZT and the centre of k-space. The data were taken
from the sodium imaging scan shown in Fig. 5. The good correspondence
demonstrates, in principle, the applicability of CZT in terms of signal
preservation.

Note that the local 7% decay per voxel must not be con-
fused with the bulk FID, the acquired k-space centre, or
the recalculated k-space centre derived from the CZT imag-
es in Fig. 6. The global signal decay of the FID is not iden-
tical with the local 7% decay in a voxel of finite dimensions
since dephasing of transverse magnetisation is different on
the global and the local scale.

6. Conclusion

We have shown in our theoretical work that the CZT is
the logical reconstruction algorithm for data acquired with
an m-SPRITE MRI experiment. This follows immediately
from the signal equation incorporating the k-space acquisi-
tion scheme and the scaling with acquisition time. Addi-
tionally, we have demonstrated that reconstruction with
the CZT is described as a convolution of a sinc function
with the correct image. Following the presented theory,
we implemented the CZT with the extension of signal nor-
malisation to the voxel volume to be applicable for T7
mapping.

Both simulations and MRI data exhibit increasing con-
volution with sinc functions as the applied scaling factor in
the CZT increases. Similar effects of less intensity are rec-
ognizable in the interpolated images as well, but must be
interpreted as an effect of under-sampling and as a type
of ringing artefacts. Interpolation always behaves as a
noise filter with a smoothing effect when applied to data
sets of low SNR. This property can be beneficial for recon-
struction of homogeneous objects but it reduces the resolu-
tion of structured objects on the other hand. However,
CZT is the superior algorithm in terms of calculation time
and is the mathematically correct reconstruction method
when FOV scaling is desired. Additionally, CZT can be
used as natural point of entry for further filtering. There-
fore, we conclude that CZT is the preferable algorithm in
most cases where resolution is of primary interest. In such
a case, it is strongly recommended to restrict the m-
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SPRITE MRI experiment to low scaling factors to reduce
the artefacts introduced by convolution with the sinc func-
tion and also, to preserve the desired resolution as demon-
strated in previous work by Halse et al. [8].
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Appendix A

For the benefit of the reader, we briefly list the basic
facts of the underlying mathematical theories that are scat-
tered throughout the literature [5,11-15].

We begin with defining the indicator function y of the
unit interval [—1,1] C R

1 for—1<x<1,
x(x) =
0 else.

We have

1 ) sin%ni if

%(6) — / 672mxfdx _ né 1 é 7é 07

-1 2, if £=0.
which we write as
7(&) = 2sinc(2né)
for short. For any a = (ay,...,a,) € R, a;>0, we also
define for x € N"
%a(X) = ylarx1) - g(aoxa) - ... - y(@nx,)

with the corresponding Fourier transform

. SN _
Xa(é) = |detA| 7(17...,1)(14 Té)
2" . (2m¢, . [(2n¢,
:|a a|Sll’lC a c...8S1IncC a— y
1°...°Ay n
aj
A=
ay

Now, let our object be a square-integrable function
S € L*(R’) on R’ in image space. We start out from

S(x) = / S (k)62 dik
,}{3

which gives the imaging equation.
For finite sampling intervals b,> 0, a cut-off at b; in the
k-space coordinates k;, and b = (by,b,,b3), results in

23b,bybs[sincyy, * S](x) = / 215 (k)S (k)e™™* dk

%3

= / S(k)e*™* dk
[=b1,b1]x[~b2,b2] x [~b3,b3]

3 g1
=Nk Ay Ay Y YT Sy (j)er A

=1 j=—q

Ak = bi/q;,

where we have approximated the last integral by the trape-
zoidal rule with a step-size 0 < Ak; = b;/q,, and 2¢,is the num-
ber of sample points for S in each coordinate, respectively.

Having introduced the general form of data sampling,
we now use the linear independence of the spatial coordi-
nates and describe only the one-dimensional case in the fol-
lowing for simplicity. Since [sinc,,,*S]1s band-limited with
precise bandwidth b, the image needs to be sampled with a
rate of Ax < 1/2b = 1/2gAk. Taking the coarsest possible
step-size Ax = 1/2b, rearranging the last set of equations,
and writing out the convolution yields

q—1
M3 S22 - [ sinca(n/26 - )S0) d.
R

J==q
m=—q,...,q— 1.

In the general case, we obtain for an arbitrary sample rate,
Ax < 1/2b = 1/2qAk, the approximation

g—1
Ak - Z Sk (j)e2mimAisk = p, . / sinCargar (MAx — »)S(v) dy.

j=—q R
(A.1)

The concept that leads to the chirp z-transform makes use
of the algebraic relation

2jm = +m’ — (j —m)(j —m)

to rewrite the left-hand side as a (discrete) convolution of
length 2¢. Setting

80) = Sa()) - e

and inserting this into the Eq. (A.1) yields

q—1
S, = Ak - eniAxAkmAm . Z g(]) . efm’AxAk(jfm)(/'fm).

Jj==q

(A.2)

This equation completely describes the chirp z-transform
[5,12,13] and can be performed efficiently by FFT on the
order of glogg. Note that we have kept the scaling factor
Ak explicit, unlike to the standard definition, given for
example in [5]. The reason for doing so here is that we want
the approximation by the trapezoidal rule still to be valid.
Furthermore, as a result of our derivation we see that the
values S, have the approximate representation

S22 / Sincom (mAY— )S(0)dy, Ax< (26)" = (2gAk)"
RN
(A3)
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if reconstructed by the chirp z-algorithm from the discrete-
ly sampled data S.(j) in the finite k-space interval [—b, b].
As can be clearly seen from this representation, the param-
eter Ax acts as a zooming factor whereas the parameter b
influences the overall resolution of the chirp z-transform
and additionally, causes an intensity scaling.

Finally, if we consider the sampled data Sx,(j) as a trun-
cated sum of many infinite delta distributions,

Sac(i) = 1k + Bk/2) -~ 6(k — jAK)S(K), b= Ak,

the result of a discrete Fourier transform (i.e., Ax = 1/2b) is
given by

q—1
S, =Ak- Z Spil)) - e™imla
==

= / A S (k) - gk + Ak f2) Y Sk — jAk)dk
R

J
=2b- |S(x) @Y e MM sincyy, (x — £/ Ak) | (mAx).
¢

(A4)

The second term of the convolution “®’* (with respect to x)
is the analytical expression of the point spread function
(PSF) of both the discrete Fourier transform and CZT.
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